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1. I n t r o d u c t i o n  

If  X is a (real) topological vector space endowed with the continuous norms 

I1" II and ] - I ,  respectively, then there is a norm preserving homeomorphism 

f :  (X, II" II) --+ (Z,  I" !) defined by f (0)  = 0 and 

Jill1 x (,) f(x) = ~-~ 

if x # 0. Observe that  such a homeomorphism is in general not linear. Consider, 

for example, R 2 endowed with the Euclidean norm ]lxll = V ~ I +  x22 and the max 

norm Ix[ = max{xl ,x2}.  So a norm preserving homeomorphism sends the unit 

ball {(x, y) E R 2 : x 2 + y2 < 1} onto the unit brick [ -1 ,  1] 2 and consequently 

changes the shape of a geometric object considerably. 

These considerations for continuous norms are not very interesting and the 

question naturally arises whether something can be said in the case of discontin- 

uous norms. All norms on finite-dimensional vector spaces are continuous, so the 

question only makes sense within the framework of infinite-dimensional spaces. 

If  X is an infinite-dimensional vector space, then it can be endowed with several 

discontinuous norms. Consider, for example, the case of iP and ~q, where p < q. 

Then as vector spaces, l p and ~q are isomorphic (they have Hamel bases of the 

same cardinality) and so under this equivalence the norm on gq defines a norm 

on ~P which is badly discontinuous of course. 

In this paper  we are interested in the classical sequence spaces 

{ ep = { (x ,~) ,~eRN:~ ,~=l lx ,~ l  < o c } ,  f o r O < p < o c ,  
{(x~)~ c R N sup{[x,I : n e N} < o¢}, for p = o¢, 

endowed with their p-norms: 

[ (E~=x Ix~lv) 1/p, for p < oc, 
(**) [XlP= [ s u p { I x , [ : h e N } ,  f o r p = ~ .  

We consider two vector space topologies on gP: the natural  norm topology and 

the topology of pointwise convergence. Observe that  gP for p E (1, oo) has the 

property that  the weak topology on one the unit balls coincides with the topology 

of pointwise convergence. So the topology of pointwise convergence is natural  if 

one wishes to deal with a metrizable topology in which balls are compact. This 

explains our interest in the topology of pointwise convergence on t °°. Its unit 
c¢ 1 ball is a classical object: it is the familiar Hilbert cube Q = I-I,~=l[- , 1]~ with 

the product topology. And its norm when restricted to nonnegative sequences in 

Q is simply the supremum of the sequence. The Hilbert cube with the sup norm 
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surfaced at other places in the literature. See, e.g., [6] where it is shown that  it 

is a universal space for compact spaces with a lower semi-continuous function to 

the unit interval [0, 1]. 

It  is well known that  the p-norms are lower semi-contiimous but not continu- 

ous in the topology of pointwise convergence. In §2 of the present paper  we shall 

prove that  if p, q < oc, then there exists a natural  norm preserving homeomor- 

phism gq --+ gP. Observe that  a formula such as the one in (.} does not work since 

the norms involved are not continuous. Nonetheless, we prove that  such a homeo- 

morphism can be defined via another simple formula. The main part  of the paper 

is devoted to proving that  there also exists for every p < oc a norm preserving 

homeomorphism g~ --~ ~P. A moment ' s  reflection shows that  for this quite a lot 

has to be achieved. For example, if p =- 2 then the homeomorphism maps for 
oo co 2 < E 2 } .  every E > 0 the "brick" I],~=1[-~, e],~ onto the ellipsoid (x • s : ~ i = 1  xi _ 

No simple formula achieves this. Pushing one specific brick onto one specific 

ellipsoid is no problem, but the need to do this for all bricks and all ellipsoids 

simultaneously creates tremendous problems. In fact, our homeomorphisms are 

constructed by means of Bing shrinking, a powerful tool from geometric topology. 

It  will be convenient to think of all the spaces / p for p • (0, ~ ]  as being situated 

in the ambient space s, the countable infinite product of real lines endowed with 

the topology of pointwise convergence. The norms in (**) can be extended to 

norms on s if one allows that  the length of a vector can be oc. The vectors in the 

complement of ~P then simply have p-norm ~ and on t p itself everything stays 

as before. All our homeomorphisms are ambient homeomorphisms, i.e., they are 

defined on all of s and are norm preserving with respect to the extended norm. 

We finish this introduction by making some remarks. 

First, infinite-dimensional topology aims among other things at proving the 

homeomorphy of certain infinite-dimensional geometric objects that  are not 

homeomorphic via a homeomorphism preserving their respective geometric struc- 

tures. A good example of this is the celebrated Anderson Theorem [1] about the 

homeomorphy of separable real Hilbert space ~2 and s. Clearly, g2 and s are not 

linearly homeomorphic. Our results fit in very well in the program of infinite- 

dimensional topology. The homeomorphisms that  we construct cannot preserve 

linearity, but do preserve the length of vectors. They show that  at least part  

of the geometric structures under consideration can be preserved. As far as we 

know, our paper  is the first a t t empt  in infinite-dimensional topology to part ly 

close the gap between homeomorphisms without additional properties and linear 

homeomorphisms. 
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Second, the me thod  of absorbing sets in infinite-dimensional topology does not 

work in our si tuation.  This  is so because this me thod  allows one to push a family 

of flexible dense  sets in place (see, e.g., Dijkstra  and Mogilski [2]) while we have 

to push uncountab ly  m a n y  compact  (=  small) sets in place. 

Third,  a famous theorem of Keller [4] asserts tha t  a Keller cube, i.e., an  infinite- 

dimensional  compac t  convex set in a separable metr izable  locally convex vector  

space, is homeomorphic  to Q. If  B is a reflexive separable Banach  space, then  

its unit  ball in the weak topology is a Keller cube. So one may  ask whether  

Keller cubes can be homeomorphic  via norm preserving homeomorphisms .  Our  

results imply  tha t  for certain classical examples  this is indeed the case. For 

consider lv for p • (1,oo).  I ts  unit  ball in the weak topology is the subspace 

Bp = { x  • s : IXlp < 1} of s. Our  homeomorph i sms  show tha t  those sets are all 

homeomorphic  via norm preserving homeomorphisms.  In  fact, they are all norm-  

homeomorphic  to the simplest  Keller cube endowed with the simplest  norm: the 

Hi lber t  cube with the sup-norm. 

2. p - n o r m s  

Let s s tand for the countable p roduc t  of lines a N. We define the following 

familiar  norms from s to [0, oc]: i f p  E (0, oc] and x = ( x l , x 2 , . . . )  then  

{{~ .~oo iXnlP,ll/p for < oc, 
IX[p : ~A-~n=l I I ] ' P 

sup{Ixnl  : n c i } ,  for p = 

I t  is well known tha t  these norms are lower semi-continuous but  not continuous 

on s. A function f :  X -+ [0, cx)] is called lower semi-continuous if the pre image of 

every interval (r, cc] is open. If  r E R ,  then we define sgn(r)  by sgn(O) -- 0 and 

sgn(r)  ~-- r / i r  I for r ~ 0. We call a function f :  s --~ s sign preserving if for each 

x, y c s with f ( x )  = y and each n E N we have y,~ = 0 or sgn(y,~) = sgn(x,~). If  

x = ( X l , X 2 , . . . )  E s, then 7rn(x) = xn for n E N.  For n E w let ~n: s ~ s be the 

project ion ~,~(x) = (Xl, x 2 , . . . ,  x,~, 0, 0 , . . . ) .  So G0 maps  the whole space onto the 

origin. Note tha t  I ~ ( x ) l p  <_ I ~ + l ( x ) l  p for every x E s, p E (0, eo], and n • w. 

For each p • (0, oc) and q • (0, oc] let HP: s -~ s be a sign preserving function 

with  the  p roper ty  t ha t  for each x , y  • s and n E N with H P ( x )  = y we have 

I~n(Y)lp = I~,~(X)lq • We show tha t  every HaP is uniquely determined.  Let  x E s, 

n • N ,  and put  y = HaP(x). Consider 

lY~I p = I ~ ( Y ) l ~ -  I~ - l (Y) l~  = lCn(x)l~ - I ~ - l ( x ) l ~ .  

Consequently,  we have 
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and, since H p is sign preserving, 

= sgn(x ) - 

The  la t ter  formula  can be used as a definition for HaP, establishing uniqueness. 

This  formula  also has the following obvious consequence: 

PROPOSITION 2.1: I f p  • (0, oo), q • (0, cxD], r • R ,  n • N ,  and x • s, then 

HP(rx )  = rHP(x )  and ~n o Hp : H~ o ~,~. 

PROPOSITION 2.2: H p is continuous for every p • (0, oc) and q • (0, c~]. 

Proo~ The expression ~v/i~n(x)l~- ]~,_l(x) l  p is a continuous function on s 

since it depends on only finitely many  xi 's .  In addit ion,  i fx~  = 0 then  l~,~(X)lq = 

I~ ,_l (x) l  a so the expression vanishes. 

Since [~,(HP(x))lp = ]~,~(X)iq for every x • s and n • N we have 

PROPOSITION 2.3: IH~(x)lp = ]Xiq for every x • s, p • (0, co), and q • (0, oc]. 

PROPOSITION 2.4: HPp is the ident i ty  and H p o H a = H~ for every p, q • (0, co) 

and r • (0, oo]. 

Proo~ The identi ty shares wi th  Hp p the proper t ies  of preserving sign and preserv- 

ing the p-norms  of project ions onto the first n-coordinates .  The  second s ta tement  

follows by a similar argument :  the composi t ion of sign preserving maps  is sign 

preserving and for each x • s and n • N ,  t~n(H p o H q ( x ) ) l p  --- I ~ n ( H q ( x ) ) l q  = 

I~n(x)lr. 
Combining  the last three proposi t ions we find: 

THEOREM 2.5: I f p ,  q • (0, oc), then HP: s -+ s is a homeomorph i sm that  

preserves norm, i.e., [HP(x)[p =- ]X]q for every x • s. 

Mazur  [5] constructed homeomorph i sms  GP: s -+ s such t ha t  GPq(g q) = gP. 

However, Mazur ' s  homeomorph i sms  are not normpreserving.  

3. T h e  s u p  n o r m  

We now turn  to the ma in  topic of this paper:  finding homeomorph i sms  h: s --+ s 

with the p roper ty  Ih(x)ip = Ixl~.  In other  words, proving tha t  the sup norm on 

s is topologically indistiguishable from, for instance,  the Hi lber t  norm. 

In  view of Theorem 2.5 we may  restrict  ourselves to the case p = 1. Note tha t  

if every x,~ is an element of [ -1 ,  1], then  H ~ ( 1 ,  x 2 , x 3 , . . . )  = ( 1 , 0 , 0 , . . . ) .  So H 1 
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is no rm preserving but  not a homeomorph i sm.  We shall prove, however, t ha t  H ~  

can be approx ima ted  by norm preserving homeomorphisms.  In the remainder  of 

this pape r  we will denote H ~  s imply by H .  Let  us recall t ha t  H has the following 

propert ies:  if y = H(x )  and n E N ,  then 

[Y[1 = E lYil = sup{Ixl l ,  Ix21, .. .} = Ixloc, 
i= l  

= ly l = m a × { I x l l , . . . ,  I x n l }  = 
i=1 

= sgn( n) m a x { 0 ,  Ix l - 

Let us explore the fibres of H :  

PROPOSITION 3.1: I f  y E S, then 

H - I ( Y )  = H {sgn(yn)i~n(Y)ll} × 1-I [-I~n(Y)ll ,  l~n(Y)ll]" 
Yn :~0 Yn =0 

Proof: Let g ( x )  = y and n e N.  First,  we have Ix~] < i~n(x)l~ = I~n(y)ll so 

x,~ e [-I~,~(y)]l, I~,~(y)ll]. Ify,~ ~ 0, then by the formula above ]x~ I > ] ~ - l ( x ) ] ~  

and hence Ixnl = I~n(X)l~ = I~n(Y)ll" Since H is sign preserving we have x,~ = 

Now let x be such tha t  x~ = sgn(y,~)l~n(y)ll if Yn ¢ 0 and Ix~l < J~(Y)]I  if 

y ,  = 0. We shall prove by induction tha t  i~n(x)l~ = I~,~(Y)]I for every n. Since 

we also have tha t  y ,  ~ 0 implies sgn(y , )  = sgn(xn),  it follows tha t  H ( x )  = y. 

We have I~o(X)lc¢ = I~o(Y)]l ~ - -  O. Let  i~n-l(X)]c~ ---- ]~n-t(Y)]l and consider 

]~n(x)ioo = max{IXnl ,  I~n-l(X)[c~} --~ max{[Xn],  I~n- l (Y)r l} .  

If  y~ = 0 then I~,~-l(y)rl = ] ~ ( y ) l l  _> Ixnl and if y~ # 0 then ]x~J = I~(Y)]I  

I~,~-I(Y)I1, so we may  conclude tha t  I~,~(x)]~ = I~(Y)B1- 

A continuous m a p  f :  X --+ Y is called p r o p e r  if the pre image of every compac t  

subset  of Y is a compac t  subset  of X.  

LEMMA 3.2: H: s -4 s is a proper surjection. 

Proof: According to 3.1 every fibre is nonempty.  

To show tha t  H is proper  consider a c o m p a c t u m  C in s. Select a sequence of 

posit ive real numbers  M = (M1, M 2 , . . . )  such tha t  

C C H [ - M n , M n ] .  
n = l  
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I f x  and y are such tha t  H(x) = y E C, then  for each n we have Ixnl _ I~n(X)]oo = 

I~(Y)I1 -< I( , , (M)]I  • Consequently,  

H - I ( C )  C f i  [ - I~n(M)I1 ,  I~ (M)I~]  
n=l  

and hence H - I ( C )  is compac t  by continuity of H .  

4. Shrinking 

We need some definitions. A proper  surjection f :  X --+ Y is called a n e a r  

h o m e o m o r p h i s m  if for every open covering V of Y there is a homeomorph i sm 

h: X ~ Y such tha t  f and h are ]2-close, i.e. for every x E X there is a V E P 

with { f (x ) ,  h(x)} C Y. A proper  surjection f :  X --4 Y is called s h r i n k a b l e  if for 

every pair  of open cover ings/4  and V of X respectively Y there is a (shrinking) 

homeomorph i sm  h: X --+ X such tha t  f o h and f are ~,'-close and the collection 

of fibres of f o h refines/~. The  key to showing tha t  we can approx imate  H with 

norm preserving homeomorph i sms  is the Bing Shrinking Cri ter ion (see [3] or [7]): 

THEOREM 4.1: A map between complete spaces is a near homeomorphism if and 

only if  it is shrinkable. 

For r E [0, c~) we define the compac t a  Ar = {x E s : Ix l~  < r} and Br  = 

{x E s : Ixll < r}.  Compac tness  follows because Ar = [ - r , r ]  TM and Br  is a 

closed subset  of  A~ by lower semi-continuity of  p-norms.  We intend to show 

tha t  H is shrinkable by homeomorph i sms  h: s -~ s tha t  leave the sup norm 

invariant,  i.e., Ih(x) ]~  = Ixl~ for every x E s. Consequently,  we have h(Ar)  = Ar 

for every r _> 0. Since IH(x)ll = Ixloo for all x E s and H is a surjection, 

we also have H(A,.) = Br for every r >_ 0. In  the s tandard  proof  for Bing's  

Theorem the homeomorph i sm  g tha t  approx imates  H is obta ined  as a limit of a 

sequence of maps  of the form gn = H o hn o . . .  o hi ,  n E N ,  where every hi is a 

shrinking homeomorph i sm.  Since we may  assume tha t  every gn has the p roper ty  

gn(A~) = Br, we may  conclude by the compactness  of Ar t ha t  g(A~) = Br for 

each r _> 0. This  result implies t ha t  Ig(x)]l = lxl  for each x E s because g is 

a homeomorph i sm.  In addition, note tha t  if the shrinking homeomorph i sms  are 

sign preserving, then also g is sign preserving. 

LEMMA 4.2: f i r :  X --+ Y is a proper surjection between metric spaces, d is a 

metric on Y and & X --4 (0, oo) and r/: Y ~ (0, oo) are lower semi-continuous 

functions, then there exists a (Lipschitz) m a p  ~: Y -~ (0, oo) such that c ( f  (x) ) < 

~(x) for every x E X ,  c(y) < 7l(y) and It(y) - c(y')l < d(y, y') for all y, y' E Y.  
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Proof: For each y E Y we may  define 

~(y) = min{5(x ) :  f ( x )  = y} E (0, oc) 

because fibres are compac t  and nonempty  and (i is lower semi-continuous. We 

show tha t  ~ is lower semi-continuous. Let t > 0 and assume tha t  ~(y) > t. 

Define the closed set F = 5-1((0,  t]) and note tha t  F is disjoint from the fibre 

of y. Every  proper  m a p  between metr ic  spaces is closed, so 0 = Y \ f ( F )  is a 

ne ighbourhood of y. Note  tha t  O c ~ - l ( ( t ,  ~ ) ) ,  proving lower semi-continui ty 

of ~. Define ~': Y -+ (0, oc) by ~ '(y)  = min{~(y) ,  ~(y)} and note tha t  C' is lower 

semi-continuous as well. 

We now define c: Y -+ R:  

¢(y) = sup{r  E R :  ~ ' (z)  > r for all z E Y with d(z,y)  < r}. 

Obviously, s(y)  < ¢ ' (y)  < min{~(y) ,  (f(x)} for every x and y with f ( x )  = y. We 

now verify t ha t  s is a posit ive function. If  y E Y, then by lower semi-cont inui ty  

there is an r > 0 such tha t  ¢ ' (z)  > ¢ ' (y ) /2  for all z E Y with d(z,y)  < r. Note 

t ha t  s(y)  > min{r ,  ¢ ' (y ) /2}  > 0. 

Let  y , y '  E Y and put  r = e ( y ) -  d(y,y').  Observe tha t  if d(z,y ')  < r, 

then  d(z ,y)  < c(y) and hence ¢ '(z)  > s(y)  > r. So ~(y')  >_ r, which means  

E(y) - c(y') < d(y, y'),  proving tha t  e has Lipschitz constant  no greater  t han  1. 

On s we will use the following F-norm:  for x E s, 

I]x[I = max{min{1 /n ,  Ix . I )  : n E N}.  

Note  t ha t  this norm is bounded  by 1 and tha t  the  corresponding metr ic  d(x, y) = 

It x - VII generates  the produc t  topology on s = R N. In  addition, we have Iixll < 

[x[~ < ]xll for each x E s. 

For the sake of clari ty we will denote  the domain  of H by X and the range of 

H by Y. The  basic shrinking of fibres of H is done in the  following lemma,  the 

proof  of which occupies the remainder  of this section. 

LEMMA 4.3: Let F and G be disjoint dosed subsets of Y ,  let e: Y --+ (0, 1] be a 

continuous map, and let n E N.  Then there exists a sign preserving homeomor- 

phism g: X -~ X with the following properties: if  x and x ~ are arbitrary points 

of X such that H(x)  -- H(x ' )  and i f  i E N,  then 

(1) I Hog( x )  - H(x)I1  < e(H(x)) ,  

(2) H(x)  E G implies g(x) = x, 

(3) i > n + 1 implies [~i o g(x)I ~ --- [~i(x)l~, 



Vol. 128, 2002 TOPOLOGICAL EQUIVALENCE OF DISCONTINUOUS NORMS 185 

(4) i > _ n + 2 i m p l i e s T r i o H o g = T r i o H ,  

(5) Ig(x)l  = Ixl , 
(6) i _> n + 2 implies 7ri o g = 7ri, 
(7) H o g(x)  = H o g(x ' ) ,  

(8) [~ri(g(x) - g(x ' ) ) l  _ (1 + e ( H ( x ) ) ) l r f ~ ( x  - x')l ,  
(9) H ( x )  E F implies 17Fn+l(g(x) - -  g(x')) I ~ c (H(x ) ) .  

The  shrinking proper t ies  o fg  are expressed by (8) and (9): g shrinks the ( n + l ) -  

project ion of all H-f ibres  of points in F ,  while at  the same t ime not significantly 

expanding the project ion of fibres in other  coordinates.  

Let  I = [0, 1] be the unit  interval and let P be the following subspace of R2: 

F = ({1} x I )  U ( I  x {1}) = { ( u , v ) :  u , v  >_ 0 and m a x { u , v }  = 1). 

Pu t  L = {(0, 1)} U ((0, 1/2] x (0, 1]) C 12. We shall construct  an isotopy at , r ,  

(t, r)  E L, of the arc F. c~t,r is a P L - m a p  tha t  will keep the segment  [0, 1 - t] x {1} 

fixed, t ha t  shrinks the segment  {1} x I linearly to {1} x [0, r], and tha t  expands  

the segment  [1 - t, 1] x {1} uniformly into the arc ([1 - t, 1] x {1}) U ({1} x [r, 1]). 

Formally,  if we denote the two components  of at , r  by (Pt,r, qt,r), then for (t, r)  C L 

and (u, v) E F we have 

pt,r(u, 1) = u and qt#(u,  1) = 1 for u < 1 - t, 

pt,r(1, v) = 1 and 

and for t > O a n d u >  l - t ,  

Pt,r(u, 1) = rain {1, 1 - t + 

qt,r(u, 1) = min  ~1, 1 + t 
( 

qt,r (1, V) = rv, 

t + l - r  ( u _  l + t )  } 
t 

t + l -  } 
t r ( u - l + t )  " 

The continuity of c~t,r is obvious except  perhaps  at  the point  (t, r)  = (0, 1), where 

c~t,r is the identity. Note tha t  if 0 < t < s and 1 - c < r < 1, then  we have no 

p rob lem if u <_ 1 - t or u = 1. Consider the remaining case 1 - t < u < 1. Then  

1 - t  <_ p(u, 1) < 1 s o p t #  is continuous. Note tha t  we have tha t  0 < ( u - l + t ) / t  < 

1 and hence 0 < (t + 1 - r ) (u  - 1 + t ) / t  < 2e. Consequently,  1 - 2e _< qt,r _< 1 so 

-1 = (/3t,r, qt,r) depends qt,r is continuous as well. I t  obvious tha t  the inverse at ,  r 

continuously on t and r as well. 

LEMMA 4.4: I f ( t , r )  C L and (u ,v)  E F, then u <_ pt,, .(u,v) <_ u / (1  - t). 

Proof'. I f t = 0 o r i f u < _ l - t < l ,  t h e n u = p t x ( u , v ) < _ u / ( 1 - t ) .  
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Let u > 1 - t .  Then pt,r (u, v) < 1 < u / ( 1 - t ) .  I f v  < 1, then u = 1 and 

ptx(u,  v) = 1 > u. On the other  hand, if v = 1, then since (t + 1 - r ) / t  > 1 we 

have 

t + l - r  
p t#(u ,v )  = m i n { 1 , 1 -  t + ~ ( u -  1 +  t)} > m i n { 1 , 1 -  t + u -  1 + t }  = u. 

We will now start  the process of defining g: X --+ X.  Let F ,  G, ~, and n be as 

in the premise of 4.3. In view of 4.2 we may assume tha t  ]e(y) - e ( y ' ) ]  < [ ] y -  y'[[ 

for y, y '  6 Y. 

Let x : (xl,  x2 , . . . )  6 X and put  y = (Yl, Y2,.-.) = H(x).  We also put  

a = I~n+l(Y)ll and b = IsCn(y)[> 

Using Proposi t ion 2.3 and the definition of H we find: 

CLAIM 4.5: a and b depend continuously on y and on x and 

( 1 )  a = and b = 
(2) a = max{b, Ix,~+l[} >_ b. 

(a) ty +ll = a - b. 

Assume tha t  b ¢ 0. We define 9 E Y by 

ayi/b, for i < n, 
Y i =  0, f o r i = n + l ,  

yi, for i > n + 2 .  

So : is a continuous mapping  from Y \ {g l (0 )  to itself. Note tha t  1~+1(Y)[1 = 

[~,~(9)11 = [~{n(Y)ll = a, so a depends continuously on Y. We then obviously 

have 

I~i(Y)ll = t~i(!))11 for every i >__ n + 1. 

Let the parameter  A be the distance from ~ to the set G: 

and let it be defined by 

l : d(!), G), 

# = m i n  1, A + d ( ! ) , F )  " 

Let the parameters  t and r be given by 

t - A~(!)) and 
5 max{l ,  a} 

} r = rain 1, 4#max{1 ,  a} " 
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Finally, we will use the abbreviat ions 

p = pt,r(b/a, ]x ,+l l /a)  and q = qt,~(b/a, Ix ,+l l /a) .  

Since b > 0 and a = max{b, IXn+ll}, we have (b/a, Ixn+ll/a) • F. Also, since 

A < l a n d s ( ~ ) )  < l , t _ < l / 5 a n d i f t = 0 t h e n A = # = 0 a n d r = l .  So ( t , r ) • L  

and the parameters  p and q are well defined. Note tha t  if b # 0, then A, #, t, and 

r depend continuously on ~ and hence on y and on x. We define g(x) as follows: 

f o r i  E N ,  

0, 
apxi/b,  

7r i 0 g ( x )  ~- X n + l ,  

sgn(xn+l)aq, 
X i ,  

for i < n and b = 0, 
for i _< n and b ¢ 0, 
f o r i = n + l  a n d b = 0 ,  
for i = n +  1 and b e  0, 
for i > n + 2 .  

It  is obvious tha t  g is sign preserving and tha t  g satisfies proper ty  (6). 

Throughou t  the remainder of this section let x '  E X be an arbi t rary  point 

with the proper ty  H(x ' )  = H(x )  = y. Since the parameters  a, b, A, #, t, and 

r depend on y, their values for x '  are identical to those for x (provided tha t  

these parameters  are defined). Put ,  for b ~ 0, p '  = pt,~(b/a, Ix~+ll/a) and 

q' = qt,r(b/a, IX~+ll/a). Let z = H o g(x) and z' = H o g(x') .  

We shall give a number  of  useful conditional properties of  g. Note tha t  x and 

x '  may  be interchanged. 

C L A I M  4.6: I£b > O, then (,~(z) = ~ n ( y )  and 

Zn+ 1 = sgn(Xn+l) max{0, aq -- ap}. 

Proo~ Consider 

 o(z) : . o  g ( x )  : . o  

ap ap 
= aPHb o ~,~(x) = ' ~ n  o H(x )  = ~-~n(Y),  

where we used Proposi t ion 2.1. Observe tha t  

z . + l  = s g n ( x . + O  max {0, [~.+1 o g ( x ) [ -  [~. o g(x ) [~}  

= 8gn(Xn+l) max{0, aq -- ap}. 

' and if, in addition, b > O, CLAIM 4.7: I fb  < a, then a -- ]x,~+ll and x~+l = x,~+l 

then p = p' and q = q'. 

Proot~ We use Claim 4.5: a = max{b, [Xn+ll} = Ixn+ll. We also have lYn+ll = 

a - b > 0 and hence x , + l  = x '  p '  n+l with Proposi t ion 3.1. Consequently, p = 

and q = q' i fb  > 0. 
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CLAIM 4.8: I f b  < a(1 - t) then  g (x )  = x.  

Proo~  We always have ~ri o g(x )  = xi  for all i >_ n + 2. 

Case I: b = 0. Then ~ ( x )  = 0 = ~,~ o g ( x )  and 7r~+1 o g ( x )  = x,~+l. 

Case II: 0 < b < a(1 - t) and b < a. So b/a  <_ 1 - t and ]Xn+ll = a by Claim 

4.7. Hence p = b/a  and q = 1 by the definition of at,~- Note tha t  subst i tut ion 

into the definition of g produces g(x )  = x.  

Case III :  0 < b <_ a(1 - t) and b = a. This forces t = 0 and hence r = 1 by the 

definition of L, so p = 1 and q = Ix~+l I/a. Subst i tut ion into the definition gives 

g ( x )  = 

CLAIM 4.9: I f b  >_ a(1 - t) and b > 0, then [ ~ -  Yll = 2 ( a -  b) ~ ,ke(~)/2 and 
< 

Proof: Consider with Claim 4.5(e) 

iYn+li -= a -- b < ta -- ~ae(9)  < )~e(~)/5 
5 max{ l ,  a} 

and 

a - b 
I f l - Y ] l =  a_vnyi_yi + l Y n + z l = - ~ b + a - b = 2 ( a - b )  < A e ( 9 ) / 2 .  

i-=1 

W i t h  the Lipschitz proper ty  of e we have 

1~(9) - ~(Y)l - IL9- Yll -< lY-  Yll -< e(9)/2. 

This means tha t  e(9) _< 2e(y) and the claim is proved. 

CLAIM 4.10 (Proper ty  (3)): I f  i >_ n + 1 then I~i og(x)foo = I~i(x)loo. 

Note tha t  the fact tha t  g preserves the sup norm (Proper ty  (5)) follows 

immediately from this claim. 

Proof: We first consider the case i = n + l .  I f b  = 0 then I ~ n + l ° g ( x ) l ~  o = 

IXnq_ll = a = I~n+l(x)]~. Let b ¢ 0. Note tha t  I~,~ og(x)]o~ = I ~ n ( x ) l o o  = ap 

and tha t  I~rn+l o g(x) l  -- aq. So we have 

I~n+l o g(x)loo = max{ap,  aq} = a = [~n+l(X)]oo 

because (p, q) C F. 

Now let i > n + 2. We have 

[~i 0 g ( x ) ] o o  -= m a x { l ~ n + l  0 g(x)]oo, ]71"n+2 o g ( x ) l ,  . . . ~ fTr i 0 g(x)[} 

= max{i  +l(x)roo, rx r} = I  (x)loo. 
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CLAIM 4.11 (Proper ty  (4)): I f i  > n + 2 then zi = yi- 

P r o o f :  This s ta tement  follows directly from Claim 4.8: 

z~ = ~i  o H o g ( x )  = s g n ( ~  o g ( x )  ) ( l ~  o g ( x ) l  ~ - I~i-1 o g ( x ) l ~ )  

---- sgn(xi)(l~i(X)lc~ --I~i-i(X)loo) = Yi. 

CLAIM 4.12 (Proper ty  (1)): Iz - Ylz -~ e(Y). 

P r o o f :  According to Claim 4.8, b <_ a(1 - t) forces g ( x )  = x ,  so we may assume 

tha t  b > a(1 - t). In  view of Claim 4.11 we have 

[z - Y[1 = I H  o g ( x )  - U(x)[1 = [~n+l(z - Y)]I = [~n(z - Y)[1 + Iz,~+l - Yn+ll. 

We have with Lemma 4.4 tha t  b < ap  <_ b / ( 1  - t )  and hence, using Claim 4.6, 

I~n(Z--Y)ll  : (b-1)]~n(Y)ll--~ ( 7 - l ) b  
b tb  

= a p - b <  - -  - b -  
- 1 - t  1 - t  

Since t _< e(~) / (5a) ,  b _< a, and t _< e(~) /5  we have 

c(~))b e(~)) E(~)) < c(~))/4. 
I ~ ( z  - y ) ] l  <_ 5 a ( 1  - t~ -< 2(1  - t~ <- 5 - ~(~)~ - 

Now we consider Zn+l = sgn(xn+l)  max{0, aq - a p }  (Claim 4.6). 

C a s e I : p  >_ q. Since (p,q) E F we h a v e p =  1, which leads t o b  >_ a - a t  in 

view of Lemma 4.4. So we have lYn+~l = a - b < a t  < c(~)/5.  Note tha t  since 

aq - ap  < 0 we have Zn+l  = 0. So 

I z . + ~  - y~+~l = lun+~l _< ~(~)/5.  

Case II:  q > p. So we have q = 1 and z,~+t -- s g n ( x n + l ) ( a  - ap ) .  Since 

Yn+I  = s g n ( x n + l ) ( a  - b) we may conclude tha t  

[z,~+l - Yn+l[  = [a - ap  - a + b[ = ]b - aPl --  [gn(z  - Y)]I ~< e(~))/4. 

So in bo th  cases we arrive at  Iz - Yll -< e(~)/2 <_ e(y), where we used Claim 

4.9. 

CLAIM 4.13: I f b  > 0 then 5 = ~). 

P r o o k  We have 7rn+l(Z ) = 0 ~- 7rn+l(y  ) and if i >_ n + 2 then lri(2) = zi  = Yi = 

lri(~) by Claim 4.11. 
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Since we are in the  case b ~ 0, we find wi th  C la im 4.6 tha t  ~,,(z) = ~ ( y ) .  

Note  t ha t  by  L e m m a  4.4, p > b/a > 0, so we have I~n(Z)]l = ap >_ bp > 0. W i t h  

C la im 4.8 and  P ropos i t i on  2.3 we find 

_ I~+ l (x ) [~ ,~ (y )=  I~+ l (Y) [ l~ (y )=  ~ ( y ) a  = ~n(~))- 
b b 

CLAIM 4.14:  g is a homeomorphism. 

Proo~ We first show tha t  g(x) depends  cont inuously on x. Since x,~+l = 0 

implies  q = 0, the  cont inui ty  of g is obvious at  every poin t  outs ide  of ~ 1 ( 0 ) .  

Let  w C X be a fixed poin t  such t ha t  ~ ( w )  = 0 and hence ~,~ o g(w) = 0 and  

7~+1 og(w) = W~+l. Since g is essent ial ly  a m a p  from R ~+1 to itself, we m a y  use 

the  sup norm to es tabl ish  continuity.  Let  5 = I ~ + l ( X  - w ) l ~ .  Note  t ha t  b ~_ 5 

and t ha t  Ix,,+1 - wn+l[ <_ 5. 

I f  w~+l = 0 then,  by Cla im 4.10, I~n+l(g(x) - g ( w ) ) [ ~  = I~,~+1 o g(x)l ~ = 

I~n+l (x ) l~  = 5. If  b = 0 then  I~ ,~+ l (g (x ) -  g ( w ) ) [ ~  = I X ~ + l -  W~+ll _< 5. 

Let  b > 0 and  w , + l  ¢ 0. According  to  L e m m a  4.4 we have 

p ~ b/(a(1 - t)) ~ 2b/a. 

W i t h o u t  loss of genera l i ty  we may  assume tha t  35 < Iwn+ll and hence t h a t  

a > IXn+ll > I w n + l l - 5  > 25 > 2b. So we h a v e p  < 1 and,  since 1 = max{p ,q} ,  

q mus t  equal  1. In  addi t ion ,  we found t ha t  a > b which implies  a = IXn+l I" So 

we have 

I~n+l(g(X ) - -g(W))  I = [ s g n ( x n T 1 ) a -  Wn+ll = IXn+l - Wn+ll ~ 5. 

For the  remain ing  case i < n we ob ta in  

J n(g(x)- g(w))l  = o g(x)l  = ap < 2b < 25. 

To show tha t  g is a homeomorph i sm we will d isplay its inverse. Let  t~: X -+ X 

be defined in the  same manner  as g wi th  the  funct ion cq,r -- (Pt,r, qt,r) rep laced  

-1  (1St,r, qt,~). P u t  2 = g(x) and z = H(2 ) .  The  funct ion t~ is wi th  i ts inverse c~t, ~ -- 

obviously  cont inuous  as well and  to  prove t h a t  ~(2) = x we only have to  consider  

the  first n + 1 coordinates .  

Case I: b = 0. Then  ~,~(~) = ~ ( x )  = 0 and x, ,+l  -- x,~+l, so ~(k)  --  x is 

obviously  true.  
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Case II:  b > 0. Then,  by  Cla im 4.13, 2 = ~) so k has the  same values for the  

pa r ame te r s  a, A, it, t, and  r as x. Let  D = I~n(Z)ll ~- I~n(:~)loc and  note  tha t ,  

as in C la im 4.13, we have /~ = ap > 0. Observe tha t  [~:,,+11 = aq. Consider  

= Pt,r ([~/a, I~n+ll/a) = Pt,,'(P, q) and 0 = qt,r (b/a, I~n+ll/a) ~ -  (tt,r (P, q)" Since 

(Pt,r,qt,r) is the  inverse of (Pt,r,qt,r) we have/5 = b/a and ~ = Ix,~+ll/a. So 

and 

a~ ab/a ap 
ap i 

7rn+ 1 o g(tC) = sgn( t~ :n+l )a  0 : s g n ( x . + l ) I x . + l  I = x.+~. 

So 0 o g is the  iden t i ty  funct ion and,  by symmet ry ,  g o ~ is the  iden t i ty  as well. 

CLAIM 4.15 (P rope r ty  (2)): I f  y C G then g(x) = x. 

Proof: In view of Cla im 4.8 we may  assume tha t  b > a(1 - t).  Accord ing  to  

C la im 4.9, I]~) - Yll <- I~) - Yll ~ ,~/2 ~- ½d(~), G).  

Case I: A = 0. Note  t ha t  # = 0 and r = 1, which means  t ha t  at,~ is the  iden t i ty  

and g(x) = x. 
Case II:  A > 0. Then  d(~, y) < A = d(~), G) and we have y ~ G. 

CLAIM 4.16 ( P r o p e r t y  (9)): I f  y E F then I~rn+l(g(x) - g(x')) 1 <_ e(y). 

! Proof: Case I: b = 0. Then  ~n(x) = ~ ( x ' )  = 0 so yn+l  = X~+l = xn+ l .  

Consequently,  7r~+1 o g(x) = Y.+I = ~r~+l o g(x'). 
' and  hence q = q'. So Case II: 0 < b < a. By Cla im 4.7 we have X ,+ l  = x,~+l 

7rn+l o g(x) = sgn(xn+Oaq = sgn(x'n+l)a q' = "fin-t-1 0 B ( X ' ) .  

Case III :  b = a > 0 and A = 0. Then  we have ~) = y in view of C la im 4.9. On 

the o ther  hand,  A = 0 means  ~ E G so ~) = y ~ F .  

Case IV: b = a > 0 and A > 0. Accord ing  to  C la im 4.9 we have d(~),y) < 

1[~)- YII -< A/2. Since y E F we have d ( ~ , F )  < A/2 and hence # = 1 and 

r < c (~ ) / (4a ) .  Since b/a -- 1 we have q -- rlxn+ll /a  and q' = rlx~n+ll/a. So 

, 
- g ( x ' ) t  = I,'x +l - rx.+IJ <  jajX +l - x'+iJ 

< e(~))2a _< c(y)  
- 4a 

because  r < c (~ ) / (4a )  and  e(~)) < 2c(y) by Cla im 4.9. 
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CLAIM 4.17 (Property (7)): z = H o g (x )  = H o g(x ' )  = z'.  

t for any i > n + 2 .  Proof." In  view of Claim 4.11 we have zi = Yi = zi 
! 

Case I: b = 0. Then  ( n ( z )  = 0 = ~n(z')  and  z~+l -- yn+l  = z,,+l. 
! 

C a s e I I :  0 < b < a. Then,  by Claim 4.7, x~+l  = X n + l , p = p ' ,  a n d q  = q', 

which means in view of Claim 4.6 tha t  

and 

~,~(z) -- b ~n(y)  = ~ - ~ n ( Y )  = ~,~(z') 

zn+l  = sgn(xn+l )  max{0, aq - ap} = sgn(xln+l) max{0, aq' - ap'}  
! 

Z n +  1 . 

Case III: 0 < b = a. Then  p = pt,~(1, IXn+ll /a)  = 1 > q and, by symmetry,  

p '  = 1 > q'. If we combine this observation with the same formulas from Claim 
! 

4.6, then we obta in  ~ ( z )  = ~ n ( Y )  = ~n(z ')  and z,,+l -- 0 = zn+ 1. 

CLAIM 4.18 (Property (8)): I~ri(g(x) - g (x ' ) )  I <_ (1 + e(y))[1ri(x - x ' ) l  for every 

i C N .  

Proof:  In  view of proper ty  (6) and Claim 4.8 we may assume tha t  i < n + 1 and  

b > a( t  - 1), so we have c(~)) _< 2~(y) by Claim 4.9. 
i pr Case I: b < a. Wi th  Cla im 4.7 we have Xn+l -- xn+l ,  p = and q -- q', so if 

i < n then 

lap  ap' x '  ap - g ( x ' )  )]  = - - g -  = - x l. 

According to Lemma 4.4, ap < b/ (1  - t) so we have 

-~-_ 1----~_ 1_ 1 _ - - 1 + - - < 1 + 4  <1+--~-- 
- 5 - - - 

Consequently, we obta in  

'Tr i (g(x)-g(x ' ) ) '<<_ ( l + ~ - ~ )  ' x i - x ' i l .  

For i = n + 1 we have 

Case II: b = a. Then  we have p = 1 and q = r[xn+l{ /a .  I f i  < n, this 

means  tha t  br/(g(x) - g(x ')){  = [xi - x~{. For i = n + 1, we have rrn+l o g (x )  = 

s g n ( x n + l ) a r [ x ~ + l l / a  = rxn+l  and hence 

[ T r n + l ( g ( X  ) - -  g ( x ' ) )  I = { r X n +  1 - -  rXln+l l  ~__ IXn+l  -- Xln+l{. 
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5. C o n c l u s i o n  

We now present  our ma in  result. 

THEOREM 5.1: For every p • (0, cx~) and every open covering V ors  there exists 

a sign preserving homeomorphism g: s --+ s, V-close to H p ,  such that  [g(x)[p = 

]x]oo for every x E s. 

Theo rem 5.1 is obta ined by combining Theo rem 2.5 wi th  the following result: 

THEOREM 5.2: For every open covering V o f  s there exists a sign preserving 

homeomorphism g: s --+ s, V-close to H,  such that  [g(x)[1 = [x[o~ for every x E s. 

P r o o f  As in §4 we consider H to be a function from X to Y. Let  5: X -+ (0, 1] 

and ~/: Y -+ (0, 1] be a rb i t r a ry  continuous functions. According to L e m m a  4.2, we 

may  assume tha t  77oH(x ) < 5(x) /4  for each x • X and tha t  ]~/(y)-~/(z)l < Hy-z]l 

for all y, z • Y. Define for each n • N the following pair  of disjoint closed subsets 

of Y: 

F ~ = { y • Y : 7 / ( y ) _ 4 / ( 3 n ) }  and G , = { y • Y : 7 / ( y ) _ > 2 / n } .  

Select a p > 0 such tha t  

a,~ < ~, 
n = l  

For instance, p = 1/5 works. 

n--1 

where am = pn n (1 + pi). 
i=1 

Pu t  cj = pJ71 for j E w. For every n E N use 

L e m m a  4.3 to find a sign preserving h o m o m o r p h i s m  gn: X --+ X tha t  satisfies 

proper t ies  (1)-(9) for F,~, G,~, Cn, and n. 

Let f0 be the identi ty on X and fn = g n ° f n - 1  for n E N.  Then  we have 

tha t  every fn  is a sign preserving homeomorphism.  Consider an x E X and an 

n E N and put  y ( j )  = H o f j ( x )  for j E w. Then  by p roper ty  (1) o fg~ ,  we have 

ly(~)  - y ( ~  - 1)[1 < ~ ( y ( ~  - 1)).  Cous ider  

I ~ n ( y ( ~ ) )  - ~ n ( y ( n  - 1 ) ) [  <_ p ~ l l y ( ~ )  - y ( n  - 1)[ I < p ' ~ l y ( n )  - y ( n  - 1)]1 

_< ,o '~n(U(n  - 1)).  

So we have for each n E N,  

c . ( u ( n ) )  < (1 + p ~ ) ~ ( y ( n  - 1)) = p(1 + p ' ) ~ . _ l ( y ( n  - 1)).  
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By i terat ion we arrive a t  

~ - l ( y ( n  - 1)) <_ p(1 + pn-1)~n_2(y(n  - 2)) 

_< p(1 + p~ - l )p (1  + p ' - 2 ) ~ n _ 3 ( y ( n  - a)) 

< p . - 1  (1 + p i )  c0(y(O)) 
i=1 

= 

Noting tha t  en = pcn-1 we have: 

CLAIM 5.3: ly(n) -- y (n  -- 1)11 _< e , ( y ( n  -- 1)) < a~o(y) for each n • N .  

Observe tha t  

ly(n) - yl ,  <- ly(J) - y(J - 1)11 <- ~ aj~(y) < ~-~ aj~(y) < ,1(y)/3. 
j = l  j = l  j = l  

and so 

IV(Y(n) )  - ~ (Y)I  -< [ lY(~)  - Yll -< JY(n) - Yll <- V ( y ) / 3 .  

We now may  conclude tha t  

CLAIM 5.4: ~'I(Y) --< ' l(Y(n)) < 4'I(Y) for every n • N .  

Choose an n • N such tha t  z/(y ) > 3 / n  and let k k n. So ~(y(k))  >_ §~(y) > 

2 /n  and hence y(k)  • Gn. By proper ty  (2) o fgk+ l  we have gk+l o f k (x)  = fk (x ) .  

Consequently,  f , ( x )  --- fi~+l(X) = f , + 2 ( x )  . . . .  for every x in the open set 

On = {x e X :  ~ o H(x )  > 3/n} .  

So if we put  f ( x )  = l i m i _ ~  f i (x ) ,  then f :  X -4 X is a well defined function. 

CLAIM 5.5: f :  X -4 X is a sign preserving homeomorphism with 

IH o f ( x )  - H(x)[1 <_ , t ( g ( x ) ) / 3  and If(x)loo = Ixloo for every x • X.  

Proof:  Since f lOn  = fnlO~ and {Oi : i • N} is an open covering of X ,  f is 

continuous and open. Since O1 C 02 C 03 C . . .  we have t ha t  f is one-to-one. 

Note tha t  fn is sign preserving and sup norm preserving as a composi t ion of g/'s. 

Again, since f lO~ = f~lOn, f has the same propert ies .  

Let z • X and select an n • N such tha t  ~(H(z) )  > 4 /n .  Since f~ is a 

h o m e o m o r p h i s m  we can find an x c X with fn (x )  = z. Then  we have, with 

Cla im 5.4, 
4 
- < ,7(H(z)) = ~ (H o fn(X))  < y (H(x ) ) .  
n 
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So we have 7j (H(x ) )  > 3 / n  and x E On. Hence f ( x )  = f ,~(x)  = z and f is a 

surjection. 

For the inequality, let n be such that f ( x )  = f n ( x ) .  Then 

IH o f ( x )  - H ( x ) l l  = ty(n)  - Yl,  <- ,I(y)/3 = , I ( H ( x ) ) / 3 .  

Let x' e X be such that H ( x ' )  = y = H ( x ) .  Define y ' ( j )  = H o f j ( x ' )  for 
j ~ .  

CLAIM 5.6: For every  j E w, y ( j )  = y ' ( j ) ,  and for every j E w and m E N wi th  

m -  1 _< 1/~(y) and  m <_ j + 1, we have  

( I~rm(fj(x)- fj(x'))l <_ 1 + 3 

Proof." We use induction with respect to j .  If j = 0, then fo is the identity so 

the first part of the claim is void. The last part becomes Ix1 - x~l _< ~(y)/3, 

which is true since xl = 7h(y) = x~ by the definition of H. 

Assume that the Claim is true for some j - 1 _ 0. Then y ( j )  = y ' ( j )  follows 

from y ( j  - 1) = y ' ( j  - 1) with Property (7) for gj.  

For the inequality consider first the case m < j .  We have that m - 1 < 1/,/(y). 

If we combine the assumptions y ( j  - 1) = y~(j - 1) and 

} T r , , ( f j _ l ( x ) -  f j _ l ( x ' ) ) l  <_ ( 1 +  ~ )  /3 f o r m _ < j  

with Property (8) of gj and Claim 5.3, then we obtain 

I ~ ( f j ( ~ )  - f j ( ~ ' ) ) l  = I ~ ( g j  o f j _ ~ ( x )  - g j  o f j - ~ ( ~ ' ) ) l  

< (1 + c ( y ( j  - 1 ) ) ) l T r m ( f j _ l ( x  ) - f j _ l ( X ' ) )  I 

_< (1 + a j ~ ( y ) )  1 + */(y)/3 

I f m  = j +  1, then we may conclude with Claim 5.4 that ~ ( y ( j  - 1)) < 4~(y) _< 

4/(3j) and hence that y ( j  - 1) E Fj .  We have by Property (9) of gj and Claim 

5.3 that 

17rj+1(fj(x) - fj(x')) I = Irrj+~(gj o fj-1(x)) - gj o fj-1(x'))} 

< ¢ j ( y ( j  - 1)) <_ aj~l(y) <_ , /(y)/3 

< ( 1 +  ' l ~ )  ) J  ,/(y)/3. 
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The following claim shows that f shrinks all fibres of H. 

CLAIM 5.7: I fH(x )  = H(x')  then [If(x) - f(x')[ I <__ ~(f(x)) .  

Proo£" Let n be such that n - 1  < 1/y(y) < n. Put j = 3n and note that 

y(y) > 3/ j ,  so x ,x '  • Oj and f ( x )  = f j (x )  and f (x ' )  = f j (x ' ) .  According to 
Claim 5.6 we have, for each m _< n, 

- f ( x ' ) ) l  = I m(fj(x) - f j ( x ' ) ) l  _< 1 + 3 

We have j <  ~ + 3 < - L - 3  2 - - n ( y )  ' so 

( 1 +  ~/(Y----~))J ~ ( 1 +  ~-~)"-7~)2 < e2 ._  

Consequently, for m <_ n, Irm(f(x)  - f (x ' ) )  I < e2rl(y)/3 and 

II(f(m) - f(x'))ll < max({1/n} tA { l T r m ( f ( x )  - f ( x ' ) ) l / m :  m < n}) 
e 2 e 2 e 2 

< --~(y)  <_ ~ r l ( H  o f (x ) )  <_ ~ 5 ( f ( x ) )  < 5(f(x)), 

where we used 1In < ~?(y) and ~?(y) < ~?(y(j)) = 3 _ 5~?(g o f (x ) )  (by Claim 5.4). 
If we put h = f - l ,  we see that the conditions for Theorem 4.1 have been met 

and Theorem 5.2 is proved. 
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