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1. Introduction

If X is a (real) topological vector space endowed with the continuous norms

Il - || and |- |, respectively, then there is a norm preserving homeomorphism
(XD = (X,|-]) defined by f(0) = 0 and

[l
(x) flz) = IE
if £ #£ 0. Observe that such a homeomorphism is in general not linear. Consider,
for example, R? endowed with the Euclidean norm ||z}| = /22 + «3 and the max
norm |z| = max{z1,zs}. So a norm preserving homeomorphism sends the unit
ball {(x,y) € R? : 22 4+ 4% < 1} onto the unit brick [-1,1]? and consequently
changes the shape of a geometric object considerably.

These considerations for continuous norms are not very interesting and the
question naturally arises whether something can be said in the case of discontin-
uous norms. All norms on finite-dimensional vector spaces are continuous, so the
question only makes sense within the framework of infinite-dimensional spaces.
If X is an infinite-dimensional vector space, then it can be endowed with several
discontinuous norms. Consider, for example, the case of #Z and £%, where p < q.
Then as vector spaces, £7 and £7 are isomorphic (they have Hamel bases of the
same cardinality) and so under this equivalence the norm on #? defines a norm
on £P which is badly discontinuous of course.

In this paper we are interested in the classical sequence spaces

P = {(@n)n € RN : 3707 | |2, |P < 00}, for 0 < p < o0,
T H{(zn)n € RN s sup{|z,| : n € N} < 0}, for p = o0,

endowed with their p-norms:

_ o lza) P, for p < oo,
(x%) lelp = {sup{lznl :n € N}, for i = o0.

We consider two vector space topologies on ¢P: the natural norm topology and
the topology of pointwise convergence. Observe that ¢F for p € (1,00) has the
property that the weak topology on one the unit balls coincides with the topology
of pointwise convergence. So the topology of pointwise convergence is natural if
one wishes to deal with a metrizable topology in which balls are compact. This
explains our interest in the topology of pointwise convergence on £°°. Its unit
ball is a classical object: it is the familiar Hilbert cube @ = [[o.,[—1, 1], with
the product topology. And its norm when restricted to nonnegative sequences in
Q) is simply the supremum of the sequence. The Hilbert cube with the sup norm
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surfaced at other places in the literature. See, e.g., [6] where it is shown that it
is a universal space for compact spaces with a lower semi-continuous function to
the unit interval [0, 1].

It is well known that the p-norms are lower semi-continuous but not continu-
ous in the topology of pointwise convergence. In §2 of the present paper we shall
prove that if p,q < oo, then there exists a natural norm preserving homeomor-
phism ¢? — ¢?. Observe that a formula such as the one in (x) does not work since
the norms involved are not continuous. Nonetheless, we prove that such a homeo-
morphism can be defined via another simple formula. The main part of the paper
is devoted to proving that there also exists for every p < oo a norm preserving
homeomorphism £ — ¢P. A moment’s reflection shows that for this quite a lot
has to be achieved. For example, if p = 2 then the homeomorphism maps for
every ¢ > 0 the “brick” [[,>,[~¢,¢], onto the ellipsoid {z € s: Y oo, z7 < £%}.
No simple formula achieves this. Pushing one specific brick onto one specific
ellipsoid is no problem, but the need to do this for all bricks and all ellipsoids
simultaneously creates tremendous problems. In fact, our homeomorphisms are
constructed by means of Bing shrinking, a powerful tool from geometric topology.

It will be convenient to think of all the spaces £ for p € (0, 0o as being situated
in the ambient space s, the countable infinite product of real lines endowed with
the topology of pointwise convergence. The norms in (x*) can be extended to
norms on s if one allows that the length of a vector can be co. The vectors in the
complement of £# then simply have p-norm oo and on P itself everything stays
as before. All our homeomorphisms are ambient homeomorphisms, i.e., they are
defined on all of s and are norm preserving with respect to the extended norm.

We finish this introduction by making some remarks.

First, infinite-dimensional topology aims among other things at proving the
homeomorphy of certain infinite-dimensional geometric objects that are not
homeomorphic via a homeomorphism preserving their respective geometric struc-
tures. A good example of this is the celebrated Anderson Theorem {1] about the
homeomorphy of separable real Hilbert space ¢2 and s. Clearly, £ and s are not
linearly homeomorphic. Our results fit in very well in the program of infinite-
dimensional topology. The homeomorphisms that we construct cannot preserve
linearity, but do preserve the length of vectors. They show that at least part
of the geometric structures under consideration can be preserved. As far as we
know, our paper is the first attempt in infinite-dimensional topology to partly
close the gap between homeomorphisms without additional properties and linear
homeomorphisms.
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Second, the method of absorbing sets in infinite-dimensional topology does not
work in our situation. This is so because this method allows one to push a family
of flexible dense sets in place (see, e.g., Dijkstra and Mogilski [2]) while we have
to push uncountably many compact (= small) sets in place.

Third, a famous theorem of Keller [4] asserts that a Keller cube, i.e., an infinite-
dimensional compact convex set in a separable metrizable locally convex vector
space, is homeomorphic to ). If B is a reflexive separable Banach space, then
its unit ball in the weak topology is a Keller cube. So one may ask whether
Keller cubes can be homeomorphic via norm preserving homeomorphisms. Our
results imply that for certain classical examples this is indeed the case. For
consider #P for p € (1,00). Its unit ball in the weak topology is the subspace
By, ={z € s : |z|, <1} of s. Our homeomorphisms show that those sets are all
homeomorphic via norm preserving homeomorphisms. In fact, they are all norm-
homeomorphic to the simplest Keller cube endowed with the simplest norm: the
Hilbert cube with the sup-norm.

2. p-norms

Let s stand for the countable product of lines RN. We define the following
familiar norms from s to [0, 00]: if p € (0,00] and z = (z1,23,...) then
|z, = { (Z;.I,O:I |$n|p)1/p, for p < o0,
sup{|z,|: n € N}, for p=co.
It is well known that these norms are lower semi-continuous but not continuous
on s. A function f: X — [0, 0o] is called lower semi-continuous if the preimage of
every interval (r, 0o] is open. If r € R, then we define sgn(r) by sgn(0) = 0 and
sgn(r) = r/|r| for r # 0. We call a function f: s — s sign preserving if for each
z,y € s with f(z) = y and each n € N we have y,, = 0 or sgn(y,.) = sgn(z,). If
z = (z1,Z3,...) € s, then m,(z) = z, for n € N. For n € w let £,: s — s be the
projection &, (z) = (£1,%Z2,...,%n,0,0,...). So & maps the whole space onto the
origin. Note that [£,(2)]p < [Ens1(z)|p for every z € s, p € (0,00, and n € w.
For each p € (0,00) and g € (0,00] let HY: s — s be a sign preserving function
with the property that for each z,y € s and n € N with Hf(z) = y we have
1€ (W)lp = |€n(2)]q- We show that every HE is uniquely determined. Let z € s,
n € N, and put y = HJ(x). Consider

[Ynl” = [En ()1} = ln-1 W) = (@)l — ln—r(2)f-

Consequently, we have

lun] = 4/ IEn(@)E ~ |enr (@)1



Vol. 128, 2002 TOPOLOGICAL EQUIVALENCE OF DISCONTINUOUS NORMS 181

and, since H} is sign preserving,

o = 560(2n) {/ 16 (@)} — [Enr ().

The latter formula can be used as a definition for HY, establishing uniqueness.
This formula also has the following obvious consequence:

PROPOSITION 2.1: If p € (0,00), g € (0,00], 7 € R, n € N, and x € s, then
HY(rz) = rHE(z) and &, 0o HY = HE 0 &,.

PROPOSITION 2.2: HP is continuous for every p € (0,00) and q € (0, 00].

Proof: The expression {/|&,(z)f — |€n-1(z)|} is a continuous function on s
since it depends on only finitely many z;’s. In addition, if 2, = 0 then |{,(z)|q =
|€n—1(2)|q so the expression vanishes.

Since |£n(HE(2))|p = |€n(T)|q for every z € s and n € N we have

PROPOSITION 2.3: |HE(z)|, = |z|, for every z € s, p € (0,00), and g € (0, 00].

PROPOSITION 2.4: HY is the identity and HY o H? = HY for every p,q € (0, 00)
and r € (0, 00].

Proof: The identity shares with HY the properties of preserving sign and preserv-
ing the p-norms of projections onto the first n-coordinates. The second statement
follows by a similar argument: the composition of sign preserving maps is sign
preserving and for each z € s and n € N, |{,(HY o Hi(z))l, = [Eu(Hi(z)|q =
&n (@)1

Combining the last three propositions we find:

THEOREM 2.5: If p,q € (0,00), then HP: s — s is a homeomorphism that
preserves norm, i.e., |HE(z)|, = |z|q for every z € s.

Mazur [5] constructed homeomorphisms G%: s — s such that GP(£9) = £P.
However, Mazur’s homeomorphisms are not normpreserving.

3. The sup norm

We now turn to the main topic of this paper: finding homeomorphisms h: s — s
with the property [A(z}|p = |Z|co. In other words, proving that the sup norm on
s is topologically indistiguishable from, for instance, the Hilbert norm.

In view of Theorem 2.5 we may restrict ourselves to the case p = 1. Note that
if every x,, is an element of [—1, 1], then H. (1,2, 73,...) = (1,0,0,...). So H,
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is norm preserving but not a homeomorphism. We shall prove, however, that H}
can be approximated by norm preserving homeomorphisms. In the remainder of
this paper we will denote H’, simply by H. Let us recall that H has the following
properties: if y = H(z) and n € N, then

o0
lyly =Y luil = sup{z1], 23], . . .} = [&]oo,
=1

€n(¥)1 = Z lyi| = max{|@1],...;[Zal} = [ (2) oo,

Yn = 580(Zn) (§n(@)]oo — €n-1(2) oo)

= sgn(z,) max{0, |z,| — |£n—1(2)|oo }-
Let us explore the fibres of H:

PropoOSITION 3.1: Ify € s, then

H‘l(y) = H {sgn(yn)ln(y)1} x H [—1&- ()1, €n(¥)1]-

Yn#0 Yn=0
Proof: Let H(x) = y and n € N. First, we have |z,| < [£:(2)|oo = [6n(¥)]1 50
€ [~1&n®)1, 1€n(®))1)- I yn # 0, then by the formula above |z5| > [£n—1(T)|o0
and hence |z,| = |€,(T)|co = [€n(y)]1. Since H is sign preserving we have z,, =
sgn(yn)€n(y)]1-

Now let z be such that z, = sgn(yn)|:(y¥)|1 if yn # 0 and |z,| < |Ea(y)]1 if
yn = 0. We shall prove by induction that |,(z)le = [€n(y)]1 for every n. Since
we also have that y, # 0 implies sgn(y,) = sgn(xy), it follows that H(z) = y.
We have |£0()|oo = 1€0(¥)]1 = 0. Let [£,-1(2)|oo = |€n—1(y)]1 and consider

|6 (2)lco = max{|znl, lén-1(2)loc} = max{|znl; [€a-1(¥)]1}-

If y, = 0 then |§n—1(y)|1 = Ifn(y)ll 2 ]-Tnl and if y,, # 0 then I'Tnl = |€n(y)ll =
|€n-1(y)l1, so We may conclude that [¢n ()]0 = |$n(¥)]1-

A continuous map f: X — Y is called proper if the preimage of every compact
subset of Y is a compact subset of X.

LEMMA 3.2: H:s — s is a proper surjection.

Proof: According to 3.1 every fibre is nonempty.
To show that H is proper consider a compactum C' in s. Select a sequence of
positive real numbers M = (M;, My, ...) such that

Cc H —M,, M,].



Vol. 128, 2002 TOPOLOGICAL EQUIVALENCE OF DISCONTINUOUS NORMS 183

If z and y are such that H(z) =y € C, then for each n we have [z] < [€n()]o0 =
[€n(®)l1 < [ (M)]1. Consequently,

H(C) ¢ [] a3l e (3)1]

n=1

and hence H(C) is compact by continuity of H.

4. Shrinking

We need some definitions. A proper surjection f: X — Y is called a near
homeomorphism if for every open covering V of Y there is a homeomorphism
h: X — Y such that f and i are V-close, i.e. for every x € X thereisa V €V
with {f(z), h(z)} C V. A proper surjection f: X — Y is called shrinkable if for
every pair of open coverings I and V of X respectively Y there is a (shrinking)
homeomorphism A: X — X such that f o h and f are V-close and the collection
of fibres of f o h refines Y. The key to showing that we can approximate H with
norm preserving homeomorphisms is the Bing Shrinking Criterion (see [3] or [7]):

THEOREM 4.1: A map between complete spaces is a near homeomorphism if and
only if it is shrinkable.

For r € [0,00) we define the compacta A, = {z € s : |z|w < r} and B, =
{z € s :|z|y < r}. Compactness follows because A, = [—r,7|N and B, is a
closed subset of A, by lower semi-continuity of p-norms. We intend to show
that H is shrinkable by homeomorphisms h: s — s that leave the sup norm
invariant, i.e., |A(x)|c = |T|co for every z € s. Consequently, we have h(4,) = A,
for every r > 0. Since |H(x)|1 = |z]e for all x € s and H is a surjection,
we also have H(A,) = B, for every r > 0. In the standard proof for Bing’s
Theorem the homeomorphism g that approximates H is obtained as a limit of a
sequence of maps of the form g, = Hoh, o...0hy, n € N, where every h; is a
shrinking homeomorphism. Since we may assume that every g, has the property
gn(A,) = B,, we may conclude by the compactness of A, that g(A,) = B, for
each 7 > 0. This result implies that |g(z)|; = |z|c for each z € s because g is
a homeomorphism. In addition, note that if the shrinking homeomorphisms are
sign preserving, then also g is sign preserving.

LEMMA 4.2: If f: X — Y is a proper surjection between metric spaces, d is a
metric on Y and §: X — (0,00) and n: Y — (0,00) are lower semi-continuous
functions, then there exists a (Lipschitz) map e: Y — (0, 00) such that e(f(z)) <
§(z) for every z € X, e(y) < nly) and |e(y) —e(y')] < d(y,y') for ally,y’ €Y.



184 J. J. DUDKSTRA AND J. VAN MILL Isr. J. Math.

Proof: For each y € Y we may define

((y) = min{é(z) : f(z) =y} € (0,00)

because fibres are compact and nonempty and ¢ is lower semi-continuous. We
show that ¢ is lower semi-continuous. Let ¢ > 0 and assume that {(y) > t.
Define the closed set F = §=!((0,¢]) and note that F is disjoint from the fibre
of y. Every proper map between metric spaces is closed, so O =Y \ f(F) is a
neighbourhood of . Note that O C (~*((¢,00)), proving lower semi-continuity
of (. Define ¢": Y — (0,00) by ¢'(y) = min{n(y), {(y)} and note that ¢’ is lower
semi-continuous as well.
We now define : Y — R:

e(y) =sup{r e R: {'(2) > r for all z € Y with d(z,y) < r}.

Obviously, e(y) < ¢'(y) < min{n(y),d(z)} for every z and y with f(z) =y. We
now verify that ¢ is a positive function. If y € Y, then by lower semi-continuity
there is an r > 0 such that {'(z) > ¢'(y)/2 for all z € Y with d(z,y) < r. Note
that e(y) > min{r,{'(y)/2} > 0.

Let 4,4’ € Y and put r = ¢(y) — d(y,y’). Observe that if d(z,¢') < r,
then d(z,y) < e(y) and hence ('(z) > e(y) > r. So £(y’) > r, which means
e(y) — e(y’) < d(y,y"), proving that £ has Lipschitz constant no greater than 1.

On s we will use the following F-norm: for z € s,

llz]] = max{min{1/n,|z,|} : n € N}.

Note that this norm is bounded by 1 and that the corresponding metric d(z,y) =
|z — y|| generates the product topology on s = RN. In addition, we have |jz|| <
|z|oo < ||y for each z € s.

For the sake of clarity we will denote the domain of H by X and the range of
H by Y. The basic shrinking of fibres of H is done in the following lemma, the
proof of which occupies the remainder of this section.

LEMMA 4.3: Let F and G be disjoint closed subsets of Y, let e: Y — (0,1] be a
continuous map, and let n € N. Then there exists a sign preserving homeomor-
phism g: X — X with the following properties: if x and x' are arbitrary points
of X such that H(x) = H(z') and if i € N, then

(1) [Hog(z) — H(z)|, < e(H()),

(2) H(z) € G implies g(z) = z,

(3) i 2 n+1 implies |£; 0 g(z)]oo = [£i(2) oo,



Vol. 128, 2002  TOPOLOGICAL EQUIVALENCE OF DISCONTINUOUS NORMS 185

(4) i>n+ 2 impliesmioHog=m o H,

(5) 19(2)loo = |2lo0,

(6) i > n+ 2 implies m; 0 g = m;,

(7) Hog(x)=Hog(z'),

(8) |mi(g(z) — g(z"))] < (1 + e(H(2)))|mi(x — z)],
(9) H(z) € F implies |mny1(g(x) — g(2))| < e(H(z)).

The shrinking properties of g are expressed by (8) and (9): g shrinks the (n+1)-
projection of all H-fibres of points in F', while at the same time not significantly
expanding the projection of fibres in other coordinates.

Let I = [0,1] be the unit interval and let T be the following subspace of R%:

= ({1} x Hu (I x {1}) = {(u,v) : u,v > 0 and max{u,v}=1}.

Put L = {(0,1)} U ((0,1/2] x (0,1]) C I?. We shall construct an isotopy .,
(t,7) € L, of the arc T'. . is a PL-map that will keep the segment [0,1—¢] x {1}
fixed, that shrinks the segment {1} x I linearly to {1} x [0, 7], and that expands
the segment [1 —¢,1] x {1} uniformly into the arc ([1—¢,1] x {1}) U ({1} x [r, 1]).
Formally, if we denote the two components of a; - by (pt.r, @z.), then for (t,7) € L
and (u,v) € T we have

per(u,1)=v and g,(u,1)=1 foru<l-t,
per(l,v)=1 and ¢ ,r(1,v) =rv,

and for t > 0 and u > 1—1t,

t+1-—
pt,r(u,l):min{l,l—t —+—T(u—1+t)},

t+1-—
qtyr(u,l):min{l,l—i—t-—+—t—t(u—l+t)}.

The continuity of o , is obvious except perhaps at the point (¢,7) = (0, 1), where
o, is the identity. Note that if 0 <t < e and 1 —e < r < 1, then we have no
problem if u < 1-—# or u = 1. Consider the remaining case 1 —¢ <« < 1. Then
1—t < p(u,1) < 1so pr is continuous. Note that we have that 0 < (u—1+t)/t <
1and hence 0 < (t+1—r)(u—1-+1)/t < 2e. Consequently, 1-2e<gq,<1s0
qs,» is continuous as well. It obvious that the inverse oy T = (Pt,r, Gs,r) depends
continuously on ¢ and r as well.

LEMMA 4.4: If (t,7) € L and (u,v) € T, then u < py,(u,v) <u/(1-1t).

Proof: Ift=0orifu<1—t<1,then u=p, (u,v) <u/(l-%).
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Let w > 1 —¢t. Then pe,(u,v) <1 <wu/(1-t). Ifv <1, then u =1 and
Per(¥,v) =1 > u. On the other hand, if v = 1, then since (t +1—r)/t > 1 we
have

. t+1- .
pw(u,v):mln{l,l—t—k—it——r(u—1+t)}Zm1n{1,1—t+u—1+t}=u.

We will now start the process of defining g: X — X. Let F, G, ¢, and n be as
in the premise of 4.3. In view of 4.2 we may assume that |e(y) —e(y')| < |ly— ¢/l
fory,y €Y.

Let = (z1,%2,...) € X and put y = (y1,¥2,...) = H(z). We also put

0= |gnt1(®)h and b= & (y)h-

Using Proposition 2.3 and the definition of H we find:

CrAm 4.5: a and b depend continuously on y and on x and

(1) a = |ént1(2)]oo and b= [6n()]co;
(2) @ =max{b, |zpnt1|} > b.
(3) lynp1l=a—b.

Assume that b # 0. We define §j € Y by

ay; /b, fori<n,
yi =14 0, fori=n+1,
Yi» for i >n+ 2.

So 7 is a continuous mapping from Y \ £,1(0) to itself. Note that |£,41(§)]1 =

[€n (@)1 = 1$én(¥)]1 = a, so a depends continuously on j. We then obviously
have

&)l = |&(F)]1 forevery i >n+ 1.

Let the parameter A be the distance from y to the set G:
A = d(g,G),
and let p be defined by

—min{l ———2)‘———}
"= A+dGF) [

Let the parameters £ and r be given by

:_—)ﬁ@_ and T:min{l’al’%f{)l—a—}}.
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Finally, we will use the abbreviations

P =pt,r(b/¢;|Tns1]/a) and g =g, (b/a,|Tns1l/a).

Since b > 0 and a = max{b, |zp+1|}, we have (b/a,|znt1]/a) € . Also, since
A<lande(y)<1,t<1/5andift=0then A\=p=0andr=1. So (t,r) e L
and the parameters p and ¢ are well defined. Note that if b # 0, then A, u, t, and
r depend continuously on § and hence on y and on 2. We define g(z) as follows:
for i € N,

0, fori <nand b=0,
apz; /b, for i <mnand b#0,

miog(x) =< T, fori=n+1and b=0,
sgn(z,y1)ag, fori=n-+1and b#0,
g, for i > n+ 2.

It is obvious that g is sign preserving and that g satisfies property (6).

Throughout the remainder of this section let ' € X be an arbitrary point
with the property H(z') = H(x) = y. Since the parameters a, b, A, p, t, and
r depend on y, their values for 2’ are identical to those for z (provided that
these parameters are defined). Put, for b # 0, p' = p;.(b/a, |2}, ,|/a) and
q' = qr(b/a,|x;,,|/a). Let z = Hog(x) and 2’ = H o g(z').

We shall give a number of useful conditional properties of g. Note that z and
x' may be interchanged.

CLAM 4.6: Ifb > 0, then £,(2) = %&,(y) and

Zn+1 = sgn(&p41) max{0, aq — ap}.
Proof: Consider
6n(2) = €n o Hog(e) = Ho&nog(z) = H(F a(a))

—-.@ fe) :21—) o] :a—pi
=5 Ho&(@) = 76 o H(z) = L6 (v),

where we used Proposition 2.1. Observe that
Znt1 = 880(Znq1) max {0, [n41 0 g(z)| — [€n © 9(2)[o0 }
= sgn(zp41) max{0, ag — ap}.
Cram 4.7: Ifb < a, then a = |z,41| and T,41 = 2, and if, in addition, b > 0,
thenp=p' and g=¢'.

Proof: We use Claim 4.5: ¢ = max{b, |zn+1|} = |Zn+1]|- We also have |y,41| =
a—b > 0 and hence z,41 = x;,,; with Proposition 3.1. Consequently, p = p’
and ¢ =¢' ifb> 0.
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CraM 4.8: Ifb < a(l —t) then g(z) = .

Proof: We always have m; o g(z) = z; for all 4 > n + 2.

Case I: b= 0. Then &,(x) =0 =¢, 0 g(z) and 7,11 0 g(T) = Tpy1.

Case I 0 <b<a(l—t)and b <a. Sob/a<1—tand |z,41] = a by Claim
4.7. Hence p = b/a and ¢ = 1 by the definition of a;,. Note that substitution
into the definition of g produces g(z) = z.

Case II1: 0 < b < a{l —t) and b = a. This forces t = 0 and hence r = 1 by the
definition of L, so p =1 and ¢ = |£,41|/a. Substitution into the definition gives
g(z) = =.

CramM 4.9: Ifb > a(1 —t) and b > 0, then |§ — y|1 = 2(a — b) < Ae(§)/2 and
e(§) < 2¢(y)-

Proof:  Consider with Claim 4.5(c)

Aae(g) _
|yn+1| a—b<ta 5max{1,a} = AS(:‘/)/5
and
"\ la a—2b
7 — = —Y: — UY; = — — 0= — < 0] .
|7 —yh ;:1‘1)3/1 Yi| +|ynt1l = ——b+a—b=2(a - b) < Xe(y)/2

With the Lipschitz property of ¢ we have

le(@) — e < 17—yl < 15—yl < e(@)/2.
This means that () < 2¢(y) and the claim is proved.
CramM 4.10 (Property (3)): Ifi > n+1 then |&; o 9(2)]|oo = [€i(®)]oo-

Note that the fact that g preserves the sup norm (Property (5)) follows
immediately from this claim.

Proof:  We first consider the case i = n+ 1. If b = 0 then |{,41 0 9(%)]o =

|Znt1] = a = [€ns1(2)|co- Let b # 0. Note that |, 0 9(2)|oo = [ En(2)|eo = ap
and that |m,41 0 g(x)| = ag. So we have

|€n+1 0 g(2)loo = max{ap, ag} = a = |€n41(2)]oo

because (p,q) € I'.
Now let ¢ > n+ 2. We have

lgz og(x)loo = max{l€n+1 09(37)]00’ lwn+2 og(m)], [RRE) ’7ri Og(.{L’)’}

= max{[§n+1(%)|oos [Tnr2ls - - -, |Zil} = 1£i(7)]co-



Vol. 128, 2002 TOPOLOGICAL EQUIVALENCE OF DISCONTINUOUS NORMS 189

Cramm 4.11 (Property (4)): Ifi > n+ 2 then z; = y;.

Proof: This statement follows directly from Claim 4.8:
zi = m; o H o g(x) = sgn(m; 0 g(z))(|¢i 0 9(2)]oo — |€i-1 0 9()]c0)
= sgn(z:) (|6 (@)oo — 1&i-1(2)]o0) = -
CramM 4.12 (Property (1)): |z — yh < e(y).
Proof:  According to Claim 4.8, b < a(1 — t) forces g(z) = x, so we may assume
that b > a(1 —t). In view of Claim 4.11 we have
|2 =yl = |H o g(z) — H(@)|1 = [€n+1(z — 9)l1 = [&n(z = ¥) 1 + |2041 — Yntal-

We have with Lemma 4.4 that b < ap < /(1 — ¢) and hence, using Claim 4.6,

ez =)l = (5 - 1) 16wl = (£ - 1) b
=ap-bs 1it —h= 1t-l-)t'
Since t < e(7)/(5a), b < a, and ¢ < £(¢)/5 we have
e(§)b e(9) e(y)
5a(l—1) = 5(1—1) = 5_e(3)

l€n(z —y)h < 5 < e(9)/4.

Now we consider 2,41 = sgn(z,+1) max{0, aq — ap} (Claim 4.6).

Case I p > ¢. Since (p,q) € I' we have p = 1, which leads to b > a — at in
view of Lemma 4.4. So we have |y,+1| = a — b < at < &(§)/5. Note that since
aq — ap < 0 we have z,,1 = 0. So

|Zn+1 = Ynt1l = [Ynirl < €(F)/5.

Case II: ¢ > p. So we have ¢ = 1 and 2,41 = sgn{z,41)(a — ap). Since
Yn+1 = 8g0(Tn41)(a — b) we may conclude that

|znt1 = Yny1l = la—ap —a+ b = |b—ap| = |&u(z — y)l1 < e(§)/4

So in both cases we arrive at |z — y|; < (9)/2 < e(y), where we used Claim
4.9.

CLAIM 4.13: Ifb > 0 then z = .

Proof: We have m,41(2) =0 =m,41(§) and if ¢ > n + 2 then m(2) = z; = y; =
7i(§) by Claim 4.11.
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Since we are in the case b # 0, we find with Claim 4.6 that &,(2) = &, (y)-
Note that by Lemma 4.4, p > b/a > 0, so we have |§,(2)|1 = ap > bp > 0. With
Claim 4.8 and Proposition 2.3 we find

5 1€n+1(2)h [€n+109(%) |0 ap
) = et (o) - e 2Dl )
= i@l () = Ko@) G ) =),

CLAIM 4.14: g is a homeomorphism.

Proof: We first show that g(z) depends continuously on z. Since z,4.; = 0
implies ¢ = 0, the continuity of g is obvious at every point outside of £, 1(0).
Let w € X be a fixed point such that &,(w) = 0 and hence &, o g(w) = 0 and
Tp+109(w) = wpy1. Since g is essentially a map from R"™*H! to itself, we may use
the sup norm to establish continuity. Let § = |{,41(z — w)|o. Note that b < 6
and that |T,41 — Wpt1| < 6.

If wyy1 = 0 then, by Claim 4.10, |{,41(9(z) — 9(w))|oc = [€n+1 0 9(%)]c0 =
€ner(@)]oo = 8. TEb = 0 then [€n1(9(2) = 9())leo = |Tn41 — Wapa| < 4.

Let b > 0 and wy41 # 0. According to Lemma 4.4 we have

p < b/(a(l-1t)) < 2b/a.

Without loss of generality we may assume that 36 < |wn41| and hence that
a > |Tnp1| > |wni1| — 8 > 26 > 2b. So we have p < 1 and, since 1 = max{p, q},
g must equal 1. In addition, we found that a > b which implies @ = |£n41]. So
we have

ITns1(9(z) — g(w))| = |sgn(Tn41)a — Wny1] = |Tngr ~— Wnpa| <0

For the remaining case ¢ < n we obtain

1€0(g(z) — 9(w))]oo = |€n © 9(2)]oo = ap < 2b < 24.

To show that g is a homeomorphism we will display its inverse. Let §: X — X
be defined in the same manner as g with the function oy, = (pt,r, :,r) replaced
with its inverse o; ; + = (Bt,r,Gs,r)- Put & = g(z) and 2 = H(Z). The function § is
obviously continuous as well and to prove that §(Z) = z we only have to consider
the first n + 1 coordinates.

Case I: b = 0. Then &,(2) = &u(z) = 0 and £,41 = Zny1, 50 §(&) = x is
obviously true.
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Case II: b > 0. Then, by Claim 4.13, Z = § so & has the same values for the
parameters a, A, g, t, and 7 as . Let b = |&,(2)|1 = |€n(&)]o and note that,
as in Claim 4.13, we have b = ap > 0. Observe that |&,41| = aq. Consider
p= f)t,r(z’/aw l-in+1|/a') = ﬁt,r(p’ Q) and § = qt,r(é/a7 l£n+1|/a) = (jt,r(p7 q)' Since
(Pt,ryGe,r) Is the inverse of (p¢r,gsr) we have p=b/a and § = |zn41l/a. So

ap __ab/aap

én Og(i) = ?fn(i') = ap b n(z) = §n(l‘)

and
Tnt1 © (&) = sgn(Ent1)ad = 5g0(Tn+1)|Tnr1| = Tny1.
So § o g is the identity function and, by symmetry, g o ¢ is the identity as well.

CramM 4.15 (Property (2)): Ify € G then g(z) = z.

Proof: In view of Claim 4.8 we may assume that b > a(1 — t). According to
Claim 4.9, l§ — yl| < 1§ — yl1 < \/2 = 3d(5,G).

Case I: A = 0. Note that g = 0 and r = 1, which means that a; . is the identity
and g(z) = z.

Case II: A > 0. Then d(7,y) < A =d(§,G) and we have y ¢ G.

CLAIM 4.16 (Property (9)): If y € F then |mp41(g9(x) — g(2'))| < ely).

Proof: Case I: b = 0. Then &,(z) = &n(z') = 050 Y1 = Tny1 = Thyq-
Consequently, Tn+1 0 g(Z) = Ynt1 = Tny1 0 g(z').
Case II: 0 < b < a. By Claim 4.7 we have z, 1, = z,,, and hence ¢ = ¢'. So

Tnt1 © 9(T) = g0 (Tnt1)aq = sgn{z), 1 )aq = mnpr 0 g(z').

Case III: b =a > 0 and A = 0. Then we have § = y in view of Claim 4.9. On
the other hand, A\=0means j € Gsoy=y ¢ F.

Case IV: b = a > 0 and A > 0. According to Claim 4.9 we have d(g,y) <
l# — yll < A/2. Since y € F we have d(§, F) < A/2 and hence p = 1 and
7 < e(g)/(4a). Since b/a =1 we have ¢ = r|z,41|/a and ¢’ = r|z] ,,]/a. So

()

[Tar1(g(z) — g(a')] = rEnpy — rag 4] < Elxnﬂ — Tl
< %%)2@ < e(y)

because r < e(g)/(4a) and (§) < 2¢(y) by Claim 4.9.
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CramM 4.17 (Property (7)): 2= Hog(z) = Hog(z') = 2.

Proof: In view of Claim 4.11 we have 2; = y; = 2} for any ¢ > n + 2.

Case I: b= 0. Then £,(2) = 0 = £,(2') and zng1 = Ynt1 = 2541

Case II: 0 < b < a. Then, by Claim 4.7, 2,41 = 4, p = p', and ¢ = ¢,
which means in view of Claim 4.6 that

() = Leal) = L (1) = £a(2)
and
Zn41 = sgn(zn41) max{0, aq — ap} = sgn(z,, , ;) max{0,aq’ — ap’}
= Zny1-
Case III: 0 < b = a. Then p = p; (1, |Tp41]/a) = 1 > ¢q and, by symmetry,
p' =1>¢. If we combine this observation with the same formulas from Claim

4.6, then we obtain £,(2) = 2£(y) = én(2’) and 2,41 =0 = 2, ;.

CLAM 4.18 (Property (8)): |mi(g(z) — g(z"))| < (1 + e(y))|mi(z — )| for every
1€ N.

Proof: 1n view of property (6) and Claim 4.8 we may assume that s < n+1 and
b > a(t — 1), so we have e(f) < 2¢(y) by Claim 4.9.

Case I b < a. With Claim 4.7 we have 2,41 = 27,,,, p=p' and ¢ = ¢, so if
i < n then

a ap a
Imil9(@) - 9(a)] = |5 s~ ] = e — il
b b b
According to Lemma 4.4, ap < b/(1 — t) so we have
N D W NP D)
b 1t~ 1-1e9) 5— () 4 2

Consequently, we obtain

ey
mta(o) = 9@ < (14 %2 b= a1
For i =n 4+ 1 we have
41 0 g(z) = sgn(Tn41)aq = sgn(2741)aq" = ot 0 g(z").
Case II: b = a. Then we have p = 1 and ¢ = r|zp41]/a. If i < n, this

means that |m;(g(z) — g(z'))| = |z; — z}|. For i = n + 1, we have 7,41 0 g(z) =
sgn(Lpn41)ar|Tny1]/a = ren4+1 and hence

ITn41(9(z) — g@NI = Irnss — ra 4] < |Tnsn = 2pal-
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5. Conclusion

We now present our main result.

THEOREM 5.1: For every p € (0,00) and every open covering V of s there exists
a sign preserving homeomorphism g: s — s, V-close to HE , such that |g(z)|, =
|z|oo for every z € s.

Theorem 5.1 is obtained by combining Theorem 2.5 with the following result:

THEOREM 5.2: For every open covering V of s there exists a sign preserving
homeomorphism g: s — s, V-close to H, such that |g(z)|1 = |#|c for every x € s.

Proof:  As in §4 we consider H to be a function from X to Y. Let 6: X — (0, 1]
and n: Y — (0, 1] be arbitrary continuous functions. According to Lemma 4.2, we
may assume that noH(z) < 6(z)/4 for each z € X and that |n(y)—n(z)| < |ly—=||
for all y,z € Y. Define for each n € N the following pair of disjoint closed subsets
of Y:

Fo={y€Y:n(y) <4/(3n)} and G,={yecY :n(y) >2/n}

Select a p > 0 such that

oo
Z an <
n=1

Lol =

, where a, = p H1+p

For instance, p = 1/5 works. Put &; = p/n for j € w. For every n € N use
Lemma 4.3 to find a sign preserving homomorphism g,,: X — X that satisfies
properties (1)-(9) for F,,, Gy, €, and n.

Let fo be the identity on X and f, = g, © fn-1 for n € N. Then we have
that every f, is a sign preserving homeomorphism. Consider an r € X and an
n € N and put y(j) = H o f;(z) for j € w. Then by property (1) of g,,, we have
ly{n) —y{n — 1)}1 <en(y(n —1)). Consider

len(y(n)) —enly(n — 1)) < p"|ly(n) —y(n - || < p"ly(n) —y(n — 1)}
< plenly(n —1)).

So we have for each n € N,

en(y(n)) < (L+p")enly(n — 1)) = p(1 + p")en-1(y(n — 1)).
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By iteration we arrive at

en-1(y(n — 1)) < p(1+ p" Ven_z(y(n — 2))
< p(1+p" Np(1+ p* Hen_a(y(n - 3))

< w*110+¢0mwm»

ann(y)/p-

Noting that ¢, = pe,_1 we have:

CrAamM 5.3: |y(n) —y(n—1)|1 <en(y(n—1)) < a,n(y) for each n € N.
Observe that

ly(m) =yl < 32 Iy() — 9 = Dl < D agmly) < 3 agn(y) < n(y)/3.

and so
In(y(n)) — ()l < lly(n) —yll < |y(n) -yl < nly)/3.

We now may conclude that
CramM 5.4: Zn(y) < nly(n)) < 4n(y) for every n € N.

Choose an n € N such that 7(y) > 3/n and let k > n. So n(y(k)) > Zn(y) >
2/n and hence y(k) € G,,. By property (2) of gx41 we have ggi10 fr(z) = fr(z).
Consequently, f,(%) = fnt1(z) = fant2(z) = --- for every z in the open set

On,={ze X :noH(z)>3/n}.
So if we put f(z) = lim; oo fi(2), then f: X — X is a well defined function.

Cramm 5.5: f: X - X is a sign preserving homeomorphism with
|H o f(z) — H(z)ls <n(H(z))/3 and |f(z)|eo = |&|eo for every z € X.

Proof: Since f|0,, = f»]|O0, and {O; : ¢ € N} is an open covering of X, f is
continuous and open. Since O; C O3 C O3 C --- we have that f is one-to-one.
Note that f,, is sign preserving and sup norm preserving as a composition of g;’s.
Again, since f|O, = f,|On, f has the same properties.

Let 2 € X and select an n € N such that n(H(z)) > 4/n. Since f, is a
homeomorphism we can find an z € X with f,(z) = z. Then we have, with
Claim 5.4,

% <n(HE) = n(H o fu(e)) < Gn(HE))
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So we have n(H(zx)) > 3/n and z € O,,. Hence f(z) = fo(z) = zand fisa
surjection.
For the inequality, let n be such that f(z) = fn{(z). Then

|H o f(z) — H(z)l = ly(n) —yh < nly)/3 =n(H(z))/3.
Let z' € X be such that H(z') = y = H(z). Define y'(j) = H o f;(z’) for
JEw.

CLAIM 5.6: For every j € w, y(j) = ¥'(J), and for every j € w and m € N with
m—1<1/n(y) and m < j+ 1, we have

j
mmtfi(a) — i) < (14 22 ) 20

Proof: We use induction with respect to 7. If 7 = 0, then fy is the identity so
the first part of the claim is void. The last part becomes |z1 — | < 5(y)/3,
which is true since z; = m1(y) = z} by the definition of H.

Assume that the Claim is true for some j — 1 > 0. Then y(j) = ¢'(j) follows
from y(j — 1) = ¢'(j — 1) with Property (7) for g;.

For the inequality consider first the case m < j. We have that m—1 < 1/5(y).
If we combine the assumptions y(j — 1) = ¢'(§ — 1) and

)\
i) = fimal < (14520 g torm <
with Property (8) of g; and Claim 5.3, then we obtain

[Tm (f5(x) = f(2 )| = |mm(gj 0 fi-1(z) — gj o fi—1(2))]
< (1 +e(yl(y — 1)))|7fm(fj—}($) = fi-1(a"))|

j—1
< (14 agn(y) (1 L1 s

(1+77(3)) (y)/3.

If m = j+1, then we may conclude with Claim 5.4 that g(y(j —1)) < %n(y) <
4/(37) and hence that y(j — 1) € F;. We have by Property (9) of g; and Claim
5.3 that

[mie1(fi(@) = fi@N] = |mjqalgs o fima(z)) ~ 9J' ° fj—l(xl))'
<ejily(i — 1) <amly) <nly)/3

< (1 + @)J n(y)/3.
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The following claim shows that f shrinks all fibres of H.
Cram 5.7: If H(zx) = H(z') then ||f(z) — f(z')|| < d(f(z)).

Proof: Let n be such that n — 1 < 1/5(y) < n. Put j = 3n and note that
n(y) > 3/4, so x,z' € O; and f(z) = f;(z) and f(z') = f;(z’). According to
Claim 5.6 we have, for each m < mn,

7 (f(2) = F& D) = Imm(f(2) = f5(2))] < (1 + 7‘7(‘31/‘)>J @

Wehavej§%+3<—3——2,so

. .
<1+—"(3—y))] < <1+1(3y—)> e
Consequently, for m < n, |7, (f(z) — f(z'))] < e?n(y)/3 and

(£ () = f@NI < max({1/n} U {lmm(f(2) = f(2')]/m:m <n})
2 2

€ 62
< ) < GaH o f(@) < T/ (@) < 6(/(@)),

where we used 1/n < n(y) and n(y) < 3n(y(j)) = 2n(H o f(z)) (by Claim 5.4).
If we put h = f~1, we see that the conditions for Theorem 4.1 have been met
and Theorem 5.2 is proved.
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